If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25^2+x^2=51^2
We move all terms to the left:
25^2+x^2-(51^2)=0
We add all the numbers together, and all the variables
x^2-1976=0
a = 1; b = 0; c = -1976;
Δ = b2-4ac
Δ = 02-4·1·(-1976)
Δ = 7904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7904}=\sqrt{16*494}=\sqrt{16}*\sqrt{494}=4\sqrt{494}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{494}}{2*1}=\frac{0-4\sqrt{494}}{2} =-\frac{4\sqrt{494}}{2} =-2\sqrt{494} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{494}}{2*1}=\frac{0+4\sqrt{494}}{2} =\frac{4\sqrt{494}}{2} =2\sqrt{494} $
| 2x-3+4x=2(2x+3+6) | | 2k +2=8 | | 4n+15=45 | | (3x+9)=5-3(x-2) | | 2m+50=50.50 | | 6(m+4)=90 | | 4-5x=-7-8 | | -2x-16-2x=-28 | | -9.2+5.4=c | | 12x-6=6x=18 | | 170=200+(-2x) | | 10^q=10000 | | 19x+10*27=707 | | 20+2t=74 | | m-17.8=8.35 | | 0.5(4-12x)=8 | | x-4=-1 | | 2(x+8)=28 | | 1/3(3x+9)=5-3(x-2) | | k^2+23=12k | | 30x=26 | | -6x-11=1 | | 2-y=42 | | 7x+-5=58 | | -9x+4x=50 | | 17*10+10y=410 | | 9z+8=80 | | 3x+5x=32 | | 7+5x=19+3x | | -2x=-36 | | x-1=-8 | | 6-x=13 |